AG真人百家乐官方网站

Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • AG真人百家乐官方网站 Us
    • Overview
      • Spatial and Temporal Design
      • History
    • Vision and Management
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups (TWGs)
    • FAQ
    • Contact Us
      • Contact NEON Biorepository
      • Field Offices
    • User Accounts
    • Staff
    • Code of Conduct

    AG真人百家乐官方网站 Us

  • Data & Samples
    • Data Portal
      • Spatial Data & Maps
    • Data Themes
      • Biogeochemistry
      • Ecohydrology
      • Land Cover and Processes
      • Organisms, Populations, and Communities
    • Samples & Specimens
      • Discover and Use NEON Samples
        • Sample Types
        • Sample Repositories
        • Megapit and Distributed Initial Characterization Soil Archives
      • Sample Processing
      • Sample Quality
    • Collection Methods
      • Protocols & Standardized Methods
      • Airborne Remote Sensing
        • Flight Box Design
        • Flight Schedules and Coverage
        • Daily Flight Reports
          • AOP Flight Report Sign Up
        • Camera
        • Imaging Spectrometer
        • Lidar
      • Automated Instruments
        • Site Level Sampling Design
        • Sensor Collection Frequency
        • Instrumented Collection Types
          • Meteorology
          • Phenocams
          • Soil Sensors
          • Ground Water
          • Surface Water
      • Observational Sampling
        • Site Level Sampling Design
        • Sampling Schedules
        • Observation Types
          • Aquatic Organisms
            • Aquatic Microbes
            • Fish
            • Macroinvertebrates & Zooplankton
            • Periphyton, Phytoplankton, and Aquatic Plants
          • Terrestrial Organisms
            • Birds
            • Ground Beetles
            • Mosquitoes
            • Small Mammals
            • Soil Microbes
            • Terrestrial Plants
            • Ticks
          • Hydrology & Geomorphology
            • Discharge
            • Geomorphology
          • Biogeochemistry
          • DNA Sequences
          • Pathogens
          • Sediments
          • Soils
            • Soil Descriptions
        • Optimizing the Observational Sampling Designs
    • Data Notifications
    • Data Guidelines and Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
      • Usage Policies
    • Data Management
      • Data Availability
      • Data Formats and Conventions
      • Data Processing
      • Data Quality
      • Data Product Bundles
      • Data Product Revisions and Releases
        • Release 2021
        • Release 2022
        • Release 2023
        • Release 2024
        • Release-2025
      • NEON and Google
      • Externally Hosted Data

    Data & Samples

  • Field Sites
    • AG真人百家乐官方网站 Field Sites and Domains
    • Explore Field Sites

    Field Sites

  • Impact
    • Observatory Blog
    • Case Studies
    • Papers & Publications
    • Newsroom
      • NEON in the News
      • Newsletter Archive
      • Newsletter Sign Up

    Impact

  • Resources
    • Getting Started with NEON Data & Resources
    • Documents and Communication Resources
      • Papers & Publications
      • Outreach Materials
    • Code Hub
      • Code Resources Guidelines
      • Code Resources Submission
    • Learning Hub
      • Science Videos
      • Tutorials
      • Workshops & Courses
      • Teaching Modules
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Funding Opportunities

    Resources

  • Get Involved
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • Upcoming Events
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NEON Science Summit
      • NCAR-NEON-Community Collaborations
        • NCAR-NEON Community Steering Committee
    • Community Engagement
      • How Community Feedback Impacts NEON Operations
    • Science Seminars and Data Skills Webinars
      • Past Years
    • Work Opportunities
      • Careers
      • Seasonal Fieldwork
      • Internships
        • Intern Alumni
    • Partners

    Get Involved

  • My Account
  • Search

Search

Learning Hub

  • Science Videos
  • Tutorials
  • Workshops & Courses
  • Teaching Modules

Breadcrumb

  1. Resources
  2. Learning Hub
  3. Tutorials
  4. Plas.io: Free Online Data Viz to Explore LiDAR Data

Tutorial

Plas.io: Free Online Data Viz to Explore LiDAR Data

Authors: Leah A. Wasser

Last Updated: Feb 6, 2024

In this tutorial, we will explore LiDAR point cloud data using the free, online .

Learning Objectives

At the end of this tutorial, you will be able to:

  • Visualize lidar point clouding using the free online data viewer plas.io
  • Describe some of the attributes associated with discrete return lidar points, including intensity, classification and RGB values.
  • Explain the use of and difference between the .las and .laz lidar file formats (standard lidar point cloud formats).

Things You鈥檒l Need To Complete This Tutorial

  • Access to the internet so you can access the

Download Data

This .las file contains sample LiDAR point cloud data collected by National Ecological Observatory Network's Airborne Observation Platform group. The .las file format is a commonly used file format to store LIDAR point cloud data. NEON are available on the .

Example visualization of LiDAR data

LiDAR data collected over Grand Mesa, Colorado as a part of instrument testing and calibration by the National Ecological Observatory Network 's Airborne Observation Platform (NEON AOP). Source: National Ecological Observatory Network (NEON)

LiDAR File Formats

LiDAR data are most often available as discrete points. Although, remember that these data can be collected by the lidar instrument, in either discrete or full waveform, formats. A collection of discrete return LiDAR points is known as a LiDAR point cloud.

.las is the commonly used file format to store LIDAR point cloud data. This format is supported by the . The format was developed by Martin Isenberg of . Laz is a highly compressed version of .las.

In this tutorial, you will open a .las file, in the plas.io free online lidar data viewer. You will then explore some of the attributes associated with a lidar data point cloud.

LiDAR Attribute Data

Remember that not all lidar data are created equally. Different lidar data may have different attributes. In this tutorial, we will look at data that contain both intensity values and a ground vs non ground classification.

Plas.io Viewer

We will use the in this tutorial. As described on their :

Plasio is a project by Uday Verma and Howard Butler that implements point cloud rendering capability in a browser. Specifically, it provides a functional implementation of the ASPRS LAS format, and it can consume LASzip-compressed data using LASzip NaCl module. Plasio is Chrome-only at this time, but it is hoped that other contributors can step forward to bring it to other browsers.

It is expected that most WebGL-capable browsers should be able to support plasio, and it contains nothing that is explicitly Chrome-specific beyond the optional NaCL LASzip module.

This tool is useful because you don't need to install anything to use it! Drag and drop your lidar data directly into the tool and begin to play! The website also provides access to some prepackaged datasets if you want to experiment on your own.

Enough reading, let's open some NEON LiDAR data!

1. Open a .las file in plas.io

  1. Download the NEON prepackaged lidar dataset (above in Download the Data) if you haven't already.
  2. The file is named: NEON-DS-Sample-LiDAR-Point-Cloud.las
  3. When the download is complete, drag the file NEON-DS-Sample-LiDAR-Point-Cloud.las into the window.
  4. Zoom and pan around the data
  5. Use the particle size slider to adjust the size of each individual lidar point. NOTE: the particle size slider is located a little more than half way down the plas.io toolbar in the "Data" section.

NICE! You should see something similar to the screenshot below:

NEON lidar data in the plas.io online tool.

Navigation in Plas.io

You might prefer to use a mouse to explore your data in plas.io. Let's test the navigation out.

  1. Left click on the screen and drag the data on the screen. Notice that this tilts the data up and down.
  2. Right click on the screen and drag noticing that this moves the entire dataset around
  3. Use the scroll bar on your mouse to zoom in and out.

How The Points are Colored

Why is everything grey when the data are loaded?

Notice that the data, upon initial view, are colored in a black - white color scheme. These colors represent the data's intensity values. Remember that the intensity value, for each LiDAR point, represents the amount of light energy that reflected off of an object and returned to the sensor. In this case, darker colors represent LESS light energy returned. Lighter colors represent MORE light returned.

Lidar intensity values represent the amount of light energy that reflected off of an object and returned to the sensor.

2. Adjust the intensity threshold

Next, scroll down through the tools in plas.io. Look for the Intensity Scaling slider. The intensity scaling slider allows you to define the thresholds of light to dark intensity values displayed in the image (similar to stretching values in an image processing software or even in Photoshop).

Drag the slider back and forth. Notice that you can brighten up the data using the slider.

The intensity scaling slider is located below the color map tool so it's easy to miss. Drag the slider back and forth to adjust the range of intensity values and to brighten up the lidar point clouds.

3. Change the lidar point cloud color options to Classification

In addition to intensity values, these lidar data also have a classification value. Lidar data classification values are numeric, ranging from 0-20 or higher. Some common classes include:

  • 0 Not classified
  • 1 Unassigned
  • 2 Ground
  • 3 Low vegetation
  • 4 Medium vegetation
  • 5 High Vegetation
  • 6 Building
Blue and Orange gradient color scheme submitted by Kendra Sand. What color scheme is your favorite?

In this case, these data are classified as either ground, or non-ground. To view the points, colored by class:

  • Change the "colorization" setting to "Classification
  • Change the intensity blending slider to "All Color"
  • For kicks - play with the various colormap options to change the colors of the points.
Set the colorization to 'classified' and then adjust the intensity blending to view the points, colored by ground and non-ground classification.

4. Spend Some Time Exploring - Do you See Any Trees?

Finally, spend some time exploring the data. what features do you see in this dataset? What does the topography look like? Is the site flat? Hilly? Mountainous? What do the lidar data tell you, just upon initial inspection?

Summary

  • The plas.io online point cloud viewer allows you to quickly view and explore lidar data point clouds.
  • Each lidar data point will have an associated set of attributes. You can check the metadata to determine which attributes the dataset contains. NEON data, provided above, contain both classification and intensity values.
  • Classification values represent the type of object that the light energy reflected off of. Classification values are often ground vs non ground. Some lidar data files might have buildings, water bodies and other natural and man-made elements classified.
  • LiDAR data often has an intensity value associated with it. This represents the amount of light energy that reflected off an object and returned to the sensor.

Additional Resources:

Questions?

If you have questions or comments on this content, please contact us.

Contact Us
NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • AG真人百家乐官方网站 Us
  • Newsroom
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2025

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.