AG真人百家乐官方网站

Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • AG真人百家乐官方网站 Us
    • Overview
      • Spatial and Temporal Design
      • History
    • Vision and Management
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups (TWGs)
    • FAQ
    • Contact Us
      • Contact NEON Biorepository
      • Field Offices
    • User Accounts
    • Staff
    • Code of Conduct

    AG真人百家乐官方网站 Us

  • Data & Samples
    • Data Portal
      • Spatial Data & Maps
    • Data Themes
      • Biogeochemistry
      • Ecohydrology
      • Land Cover and Processes
      • Organisms, Populations, and Communities
    • Samples & Specimens
      • Discover and Use NEON Samples
        • Sample Types
        • Sample Repositories
        • Megapit and Distributed Initial Characterization Soil Archives
      • Sample Processing
      • Sample Quality
    • Collection Methods
      • Protocols & Standardized Methods
      • Airborne Remote Sensing
        • Flight Box Design
        • Flight Schedules and Coverage
        • Daily Flight Reports
          • AOP Flight Report Sign Up
        • Camera
        • Imaging Spectrometer
        • Lidar
      • Automated Instruments
        • Site Level Sampling Design
        • Sensor Collection Frequency
        • Instrumented Collection Types
          • Meteorology
          • Phenocams
          • Soil Sensors
          • Ground Water
          • Surface Water
      • Observational Sampling
        • Site Level Sampling Design
        • Sampling Schedules
        • Observation Types
          • Aquatic Organisms
            • Aquatic Microbes
            • Fish
            • Macroinvertebrates & Zooplankton
            • Periphyton, Phytoplankton, and Aquatic Plants
          • Terrestrial Organisms
            • Birds
            • Ground Beetles
            • Mosquitoes
            • Small Mammals
            • Soil Microbes
            • Terrestrial Plants
            • Ticks
          • Hydrology & Geomorphology
            • Discharge
            • Geomorphology
          • Biogeochemistry
          • DNA Sequences
          • Pathogens
          • Sediments
          • Soils
            • Soil Descriptions
        • Optimizing the Observational Sampling Designs
    • Data Notifications
    • Data Guidelines and Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
      • Usage Policies
    • Data Management
      • Data Availability
      • Data Formats and Conventions
      • Data Processing
      • Data Quality
      • Data Product Bundles
      • Data Product Revisions and Releases
        • Release 2021
        • Release 2022
        • Release 2023
        • Release 2024
        • Release-2025
      • NEON and Google
      • Externally Hosted Data

    Data & Samples

  • Field Sites
    • AG真人百家乐官方网站 Field Sites and Domains
    • Explore Field Sites

    Field Sites

  • Impact
    • Observatory Blog
    • Case Studies
    • Papers & Publications
    • Newsroom
      • NEON in the News
      • Newsletter Archive
      • Newsletter Sign Up

    Impact

  • Resources
    • Getting Started with NEON Data & Resources
    • Documents and Communication Resources
      • Papers & Publications
      • Outreach Materials
    • Code Hub
      • Code Resources Guidelines
      • Code Resources Submission
    • Learning Hub
      • Science Videos
      • Tutorials
      • Workshops & Courses
      • Teaching Modules
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Funding Opportunities

    Resources

  • Get Involved
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • Upcoming Events
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NEON Science Summit
      • NCAR-NEON-Community Collaborations
        • NCAR-NEON Community Steering Committee
    • Community Engagement
      • How Community Feedback Impacts NEON Operations
    • Science Seminars and Data Skills Webinars
      • Past Years
    • Work Opportunities
      • Careers
      • Seasonal Fieldwork
      • Internships
        • Intern Alumni
    • Partners

    Get Involved

  • My Account
  • Search

Search

Impact

  • Observatory Blog
  • Case Studies
  • Papers & Publications
  • Newsroom

Breadcrumb

  1. Impact
  2. Observatory Blog
  3. Pushing the Frontiers of Remote Sensing Science with NEON

Pushing the Frontiers of Remote Sensing Science with NEON

December 9, 2021

Twin otter plane

One of the hallmarks of the scientific method is that when new evidence comes to light, previously held assumptions must be reassessed. That is true of the NEON program, as it is for any scientific endeavor. That's why we work closely with scientific experts in the community, continually examining methods with the goal of maintaining the high standards of data quality, continuity, and repeatability required for good science.

Maintaining such standards sometimes requires making changes to our protocols based on new information provided by our user community or our own scientists. Users were notified of an example of this evolution last year, when previously existing methods that were used to create several data products from NEON's Airborne Observation Platform (AOP) were found to not meet the quality expectations of the scientists at the NEON Observatory and expert users in the community.

Airborne Observatory Platform Complements Ground Data

The NEON AOP provides regional-scale maps of NEON's 81 sampling sites and surrounding areas. The AOP comprises a full-waveform lidar, imaging spectrometer, and high-resolution RGB camera, all mounted in an aircraft that flies at low altitude, allowing the landscape to be captured at very high resolution (\<= 1m2). These sensors acquire very precise data for characterizing the three-dimensional structure and chemical composition of surface features. In particular, the AOP is designed to enable understanding of changes in vegetation composition and function over the 30-year lifespan of the NEON program. In conjunction with field data collected on the ground at each NEON site, AOP data provide unprecedented insight into how our environment is changing in various unique environments across the continent and through multiple decades.

What makes the NEON AOP data so novel? These data are unique due to the breadth of ecosystems sampled, the regular repetition of collections of the same areas through time, the exquisite detail obtained through a low-altitude airborne platform, and the high accuracy of observations attained through rigorous annual sensor calibrations. This is the first project of this scope and scale in the world, and all data derived from the NEON Observatory are freely available globally through our data portal. This unique sampling strategy and attention to quality鈥攃ombined with an active and engaged scientific user community鈥攆oster an environment for transformative science.

The NEON Imaging Spectrometer collects measurements of sunlight reflected from the Earth's surface in hundreds of narrow (typically 5 to 10 nm) spectral channels covering a range of wavelengths from 380 to 2500 nm, well beyond the capabilities of the human eye. These hyperspectral data can be used to identify plant species and communities, map vegetation health, detect disease or invasive species, and map drought and its impacts. To do so, scientists first need to understand how the raw measures of reflected sunlight from the surface translate into more useful information like nutrient concentration. The details of these translational algorithms are an active area of scientific inquiry and, combined with novel datasets like those provided by NEON, are primed to evolve rapidly. We expect that the availability of such a novel dataset will inevitably transform current paradigms, accelerating the scientific community's ability to describe how our planet is changing. Our challenge is in how to respond to new information as the scientific consensus evolves.

AOP remote sensing banner

AOP remote sensing data collection, featuring a twin otter plane and airborne sensor operators collecting data

Evolving the NEON AOP Data Products

We faced the challenge of incorporating scientific advances into NEON's data products in 2020, when the AOP Data Quality Technical Working Group鈥攁 volunteer community of external experts鈥攔ecommended that NEON suspend delivery of several data products derived from the imaging spectrometer, including total biomass, canopy nitrogen, and canopy lignin products. Their recommendations reflected the first-hand knowledge of these experts from their active research projects and best practices within the environmental remote sensing research community. These recommendations reflected the concern that the existing algorithms could not be reliably applied to the scale of the AOP measurements and across the diversity of NEON sites. Therefore, with concurrence from the National Science Foundation, we suspended publication of these data products a year ago (17 November 2020).

The suspension of these data products does not indicate issues with the quality of the underlying data, but in the application of the available published formulas that represented the current state of the science. The data products will be reinstated once NEON staff are able to leverage community-improved algorithms that apply cutting edge techniques and leverage calibration and validation from NEON-collected field data.

One year after their suspension, these suspended data products were used in a recently (17 November 2021), purportedly showing poor relationships to field measurements at a NEON grassland field site. These discovered poor relationships validate our decision to suspend them. It also serves as an unfortunate alert to the ecological community that vigilance is required when using big data, including NEON data. Authors must be aware of the standard data notifications that NEON publishes in all cases like this. This is standard practice across the many scientific communities whose data quality relies on complex data processing and algorithms, which themselves are the products of research. We look forward to the development of new methods for treatment of the raw AOP data to generate the best quality data products, and, once available, we encourage these scientists to reanalyze their ground-based data. There are over 65 peer-reviewed that use the NEON AOP data. We encourage researchers to use these data to further explore novel methods and algorithms to tackle the complex environmental challenges the NEON program was designed to explore.

Photo of plane landing at Boulder airport

NEON plane landing at the Boulder, CO airport. Photo credit: Colin Williams

A Continued Commitment to Data Quality

At NEON, we welcome the ebb and flow of scientific advancement and consistently strive to adapt to the rapid evolution across scientific fields. We will continue to work with and collaborate with the user community to integrate exciting new advancements, even if it means changing traditionally held methods and revising data products. Ultimately, this collaborative effort will maximize the utility of the NEON dataset and serve to accelerate answers to the grand challenge questions in ecology.

Share

Related Posts:

AOP Data Availability Notification 鈥� Release 2025

January 10, 2025

2024 in Photos: A Look Back Across the Observatory

December 30, 2024

Flux tower in snow

Resolved: Spurious trace precipitation in Primary Precipitation data product

December 27, 2024

NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • AG真人百家乐官方网站 Us
  • Newsroom
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2025

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.